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Physical understanding is key ingredient of intelligence

2Haarnoja, Ha, Zhou, et al., Learning to Walk via Deep Reinforcement Learning, 2018



Understanding Physics by Observing

• Learn by observing

3

Wu, Yildirim, Lim, et al., Galileo: Perceiving physical object properties by integrating a physics engine with deep learning, 2015
Bakhtin, Maaten, Johnson, et al., Phyre: A new benchmark for physical reasoning, 2019 
Yi, Gan, Li, et al., Clevrer: Collision events for video representation and reasoning, 2020



Understanding Physics by Performing Tasks

• Learn by doing
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Understanding Physics by Performing Tasks
• Learn physics by a continuous decision making process driven by a task
• Interact, get feedback, improve the knowledge, and make decision accordingly.

PC Game Ballance
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Current robotics simulation environments
• Navigation
• Others: Aim to tackle the long-horizon navigation challenges

• Large-scale indoor scene across multiple rooms
• Building the environment map
• Hierarchical planning
• Discretize the state space into a grid world
• Lack of physics-driven movements

• Ours
• Fine-grained mechanical interactions with joint-space control
• Restrict tasks to a single room scene to avoid hard exploration

6B. Shen, F. Xia, C. Li, et al., iGibson: A simulation environment for interactive tasks in large realistic scenes, 2020



Current robotics simulation environments

• Manipulation
• Others

• Table-top manipulation
• Requires gripper and arm

• Magic pointer
• Grab and release object in the pixel space
• Not physics-driven

• Ours
• Pushing while moving 

• Unify navigation and object interaction skills
• Avoid the need for dexterous manipulation 

7

Savva, Kadian, Maksymets, et al., Habitat: A Platform for Embodied AI Research, 2019
Singh, Yu, Yang, et al., COG: Connecting New Skills to Past Experience with Offline Reinforcement Learning, 2020
Chebotar, Hausman, Lu, et al., Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills, 2021



Openrooms
• Unique ground-truth of properties such as materials, friction coefficients, masses,

and correspondence to real scenes.

Virtual scene Navigation Rearranged scene Different lighting Different materials Corresponding real scene

Virtual scene Navigation Rearranged scene Different lighting Different materials Corresponding real scene

Virtual scene Navigation Rearranged scene Different lighting Different materials Corresponding real scene

Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, et al., 
OpenRooms: An End-to-End Open Framework for Photorealistic Indoor Scene Datasets in Conference on Computer Vision and Pattern Recognition (CVPR) [Oral], 2021 



Openrooms
• Integrating with physics engine Bullet, enables robot learning in highly physics 

realistic environments
• Navigation based object searching
• Room rearrangement

9

Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng Song, et al., 
OpenRooms: An End-to-End Open Framework for Photorealistic Indoor Scene Datasets in Conference on Computer Vision and Pattern Recognition (CVPR) [Oral], 2021 



Openrooms
• Transfer learning
• Transfer skills to similar tasks in environments with different masses, frictions,

lightings
• Learn and adapt in a non-stationary environment with gradually changing

dynamics in the real-world setting
• Different terrains

• Variable payloads

10
Shah, Eysenbach, Kahn, et al., ViNG: Learning Open-World Navigation with Visual Goals, 2020
Xie, Harrison, Finn, Deep Reinforcement Learning amidst Lifelong Non-Stationarity, 2020



Sequential Decision Making Process
Agent

Environment 11

• At each step t the agent:
• Takes an action 𝑎!
• Receives a state 𝑠!
• Receives a scalar reward 𝑟!

• At each step t the environment:
• Receives an action 𝑎!
• Emits a state 𝑠!"#
• Emits a scalar reward 𝑟!"#

Action 𝑎!

State 𝑠!

Reward 𝑟!



Markov Decision Process

• The environment can be specified by:
• A state space S, 𝒔 ∈ 𝑺 (discrete or continuous)
• An action space A, 𝒂 ∈ 𝑨 (discrete or continuous)
• Transition probability distribution

• 𝑃(𝑠!"#|𝑠! , 𝑎!)
• Markov property

• The initial state distribution 𝜌$
• Reward function r 𝑠% , 𝑎%
• The discount factor 𝛾 ∈ [0,1]

• 𝛾 → 0, consider only immediate reward

12



The objective of reinforcement learning problem

• Given a MDP, find the optimal policy 𝜋∗ to maximize the expected return

return 𝑅(𝜏)

• Trajectory (episode) :
• Return 𝑅(𝜏): get bounded by 𝛾
• The probability of 𝜏 under 𝜋 is

13
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Goal-oriented RL
• The agent aims to reach a set of goal states G = g , G ⊆ S which indicating the

success of a task
• g is absorbing

• Stochastic shortest path problem via trial-and-error

14Image credit: Nan Jiang CS 498 Reinforcement Learning

goal state

𝑟 𝑠! , 𝑎! = -
𝑅 ≥ 0, 𝑟𝑒𝑎𝑐ℎ 𝑔𝑜𝑎𝑙 𝑠𝑡𝑎𝑡𝑒
𝑟" 𝑠! , 𝑎! < 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Goal Matching Problem

• Most of the robotics tasks can be formulated as goal-oriented RL
problem, usually a single goal matching problem.

Goal state: target positions of the gripper and the objects

Yu, Quillen, He, et al., Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning, 2019 15



Goal Matching Problem

Janner, Levine, Freeman, et al., Reasoning About Physical Interactions with Object-Oriented Prediction and Planning, 2019
Kolve, Mottaghi, Han, et al., AI2-THOR: An Interactive 3D Environment for Visual AI, 2019

goal image build a block castle

goal image visual navigation
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Is goal matching enough for physics-awareness?

• Matching two goal states usually requires purely geometric
understanding abilities
• Match shapes, geometric configurations, latent visual representations and

measure their distances

• Physics properties influence the agent’s behavior in the mechanical
process of how to reach the goal, not the goal itself.
• Navigate through terrains with different frictions in different speed and gaze
• Lift up a hammer of different weights to hit the nail requires different forces

17



How to evaluate an agent’s physics-awareness?

• The agent’s policy should reflect its understanding to the physical
properties of the environment
• The agent’s expected behavior should be consistent with human’s physics

intuition

• The tasks should allow a set of equally valid goal states among which 
the agent must choose the optimal one based on its physical 
understanding 

18



Variable Friction Pushing Task
• The agent should plan a trajectory to push a box to a target 

rectangular region located on the other band.
• Be aware of the friction difference

19Meng Song, Yuhan Liu, Zheng qin Li, Manmohan Chandraker, Learning Physics-Aware Rearrangement in Indoor Scenes, Neurips 2021, under review

• The agent and a box are initialized on a two-
band floor. 

• The red and blue bands have friction 
coefficients 0.2 and 0.8 respectively. 



Variable Mass Pushing Task

• The agent should push one of the boxes outside the circular area 
• Be aware of the mass difference

20Meng Song, Yuhan Liu, Zheng qin Li, Manmohan Chandraker, Learning Physics-Aware Rearrangement in Indoor Scenes, Neurips 2021, under review

• The robot’s initial position is always at 
the center of the circle, while the two 
boxes are initialized at locations 
equidistant to the robot.

• The two boxes are instances of the same 
CAD model but with different materials 
and weights (10 kg and 50 kg, 
respectively). 



Energy Cost as Learning Signal

• To teach an agent the physics notions such as friction and mass in our 
pushing tasks, we compute the raw energy E(t) the agent spends at
each time step t on pushing the box to move on a floor. 
• E(t) is the virtual physical work done on translating and rotating the 

box

21



Adaptive Energy Cost 

• The step energy cost 

• 𝐸,-.(𝑡) and 𝐸,/0(𝑡) are the running minimum and maximum of raw 
energy over the history until time step t. 

• Let 𝑐 𝑡 = 1, when 𝐸#$% 𝑡 = 𝐸#&' 𝑡 .

22



Adaptive Energy Cost 

• 𝐸,-.(𝑡) and 𝐸,/0(𝑡) caches the agent’s current knowledge about the
environment during the learning process
• The physical properties of the visited locations
• The agent’s exploration behavior
• How did the agent interact with the object

• 𝐸,-.(𝑡) and 𝐸,/0(𝑡) are updated in real time
• Adding c(t) to the reward function yields a non-stationary reward function

23



Adaptive Energy Cost 

• The normalized c(t) represents the per-step pushing energy cost 
relative to all history data

24

• Then, we define 𝑐(𝜏) as the relative episode energy cost along a 
trajectory 



Variable Friction Pushing Task
• State space

• Current 3D positions and orientations of the robot and boxes in Cartesian space 

• Action space
• Robot platform: Fetch

• Fixed torso, arm, hand
• Velocity control on wheels
• Discrete and parameterized by v which is the maximum value of wheel angular 

velocity
• Move forward: [v, v]
• Turn left: [0.5v, -0.5v]
• Turn right: [−0.5v, 0.5v] 
• Stop: [0,0]

25



Variable Friction Pushing Task
• Basic setting
• Reward function

• Optimal policy
• Stochastic shortest path problem, penalize time elapse
• Pushing the box to the target region as quickly as possible 

26



Variable Friction Pushing Task

27

• Physics-aware setting 
• Reward function

• Optimal policy
• Stochastic shortest path problem, penalize per step energy cost

• Edges on MDP are pushed up and down according to the energy ratio in real-time
• This landscape shaping helps the agent to memorize the optimal trajectory

• Pushing the box to the target region in the most energy efficient way 
• Prefer to choose the path staying on the low-friction band longer



Variable Friction Pushing Task: Training Curves

28

• Are the proposed energy-aware reward functions help learn an energy-efficient 
policy? 



Variable Friction Pushing Task: Trajectory Distribution

29

No energy: prefer the shortest path With energy: prefer the low friction path

• Does the behavior difference between policies learned with or without energy 
rewards reflect the agent’s knowledge of friction coefficient? 



Variable Mass Pushing Task

30

• Basic setting
• Reward function

• Optimal policy
• Choose either box to push outside the circular region
• Not a stochastic shortest path problem

• The pushing trajectory does not matter
• Choose which box to push is expected to have no correlation with the box weight. 



Variable Mass Pushing Task

31

• Physics-aware setting
• Reward function

• Optimal policy
• Always choose to push the light box outside the circular

region
• Trajectories on MDP are pushed up and down according to

the energy ratio in real-time
• This landscape shaping helps the agent to memorize the

optimal trajectory



Variable Mass Pushing Task: Training Configurations

32

• In each configuration
• We allow for four facing directions as the agent’s initial orientation to diversify the initial geometric 

configuration.
• For each facing direction, there are two choices to place the box: the light one on the left or on the 

right. 
• Each training trial will correspond to a configuration covering all four directions. 

• 16 configurations in total.
• At the beginning of every episode, one facing direction is randomly selected from the certain configuration. 

• Train on randomly picked 10 configurations to prevent the agent from memorizing the correlations 
between box positions and masses.

Configuration 0



Variable Mass Pushing Task: Training Curves

33

• Are the proposed energy-aware reward functions help learn an energy-efficient 
policy? 



Variable Mass Pushing Task: Trajectory Distribution
• Does the behavior difference between policies learned with or without energy 

rewards reflect the agent’s knowledge of mass? 

34

• The energy-aware agent always pushes the 
lighter box in all 10 configurations.

• The baseline agent chooses to push the light 
or heavy box with nearly equal probabilities. 



• Motivation:
• Can the robot be aware of lighting and act accordingly?

• Task scenario 1
• Extension of the variable friction pushing task with images as observations
• The agent is given the images of two materials before the pushing task and

needs to choose a path with low energy cost according to this prior knowledge.

35

Next problem 1: Lighting-aware Agents



Next problem 1: Lighting-aware Agents
• Task scenario 2
• This task is designed to test the robot’s understanding ability of global

illumination.
• A robot is asked to fetch the key from under a dark table. The room has two 

lights. Turing on either light will give enough illumination for the robot to see
the key, but turning on the right light and pick up the key will take longer path.
• The robot is aiming to succeed the task in minimum amount of time.

36



• Task scenario 3
• An agent is equipped with a flashlight and aiming to search for a given object

in a dark room in minimum amount of time
• Similar to a robot rescue task

• The target object is given as an image
• The agent could navigate in the 3D room and decide when to turn on the

flashlight and where to look at.

37

Next problem 1: Lighting-aware Agents



Next problem 1: Lighting-aware Agents
• Active exploration
• Explore the space

• Never seen before
• The model uncertainty is high
• More likely target locations inferred from prior knowledge

• high correlation between pillow and bed

• Build the environment model
• Embed the first-person visual observations into a low dimensional latent state space z

• Preserve the visual similarity for retrieving the image of target object
• Key challenge: Build the MDP graph in the latent space Z

• Preserve the transitions: 𝑠, 𝑎 → 𝑠′
• Preserve the spatial relationships of the objects (The cup is on the table)

38



Next problem 1: Lighting-aware Agent

• Timeline
• Create the environment and tasks, show toy examples

• 2~3 months (may need better rendering, adapt robot morphology)
• Study the key problems

• 4 months (vision-based robot learning requires longer training time on large
computational resources)

• Expected publication
• CVPR 2022

• Submission deadline: Nov 2021
• IROS 2022

• Submission deadline: Mar 2022
• ECCV 2022

• Submission deadline: Mar 2022

39



Next problem 2: Transfer skills to different dynamics?

40

• Motivation: If the physics parameter of the environment changes, can the agent be aware of that
and adapt its policy accordingly?

• Example: Train: mass=10, friction coefficient=0.8

Test: mass=10, friction coefficient=0.8 Test: mass=10, friction coefficient=0.1 Test: mass=150, friction coefficient=0.8



Transfer learning in RL: Problem Formulation
• Assumption:𝑀<~𝑃(ℳ)

• In our case, training and test MDPs come from the same distribution with changes in
dynamics 𝑃(𝑠!"#|𝑠! , 𝑎!)

• Training
• Train on MDPs {𝑀#, … ,𝑀$}, find 𝜋#, … , 𝜋$

• Test-time
• Sample a new MDP 𝑀!%&!~𝑃(ℳ)
• Find 𝜋!%&! leveraging experiences and knowledge from 𝑀#, … ,𝑀$ for faster learning and 

better performance (i.e. how to act and explore)
• Trajectories from 𝑀!, … ,𝑀"
• Policies and value functions
• Transition functions

41Adapted from Sergey Levine, CS 285 Deep Reinforcement Learning

friction=0.1 friction=0.4 friction=0.6 friction=0.8



Meta Learning Perspective

42

• Key idea: Policies 𝜋=! are generated from a higher-level function 𝑓> given the MDP
• Training:

• Test-time:
• Given 𝑀%?@%, find 𝜋%?@% from 𝜙%?@%=𝑓>∗(𝑀%?@%)

𝑓(𝑀$ 𝜙$



Meta Learning Perspective

43

• In Practice, three ways to implement 𝑓> :
• 𝑓> is a RNN policy trained across MDPs
• Bi-level optimization: learn 𝜋>

• Inference problem
• The dynamics are generated from a distribution parameterized by z
• In our case, z is physics parameters such as friction, mass.

• Find policy 𝜋>(𝑎|𝑠, 𝑧) conditioning on z

𝑓(𝑀$ 𝜙$



Dynamics Alignment Perspective
• We cannot transfer because we are not abstract enough

• Align MDPs to abstract out dynamics differences in friction, mass, …

• Find a mapping H from 𝑀# to 𝑀' such that

• Once this mapping is found, we can directly transfer the policy trained on 𝑀# to 𝑀', without 
needing any additional learning on 𝑀'. 

44
Zhang, Xiao, Efros, et al., Learning Cross-Domain Correspondence for Control with Dynamics Cycle-Consistency, 2020
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Next problem 2: Transfer learning in RL across different
dynamics
• Timeline

• Study and improve the existing algorithms on RL benchmark tasks
• 3 months

• Propose new algorithm
• 3 months

• (Experiments on complex real-world tasks: 2 months)
• Expected publication

• ICLR 2022
• Submission deadline: Sept 2021

• Neurips 2022
• Submission deadline: May 2022

• ICLR 2023
• Submission deadline: Sept 2022
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Q & A

Thanks!
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Backup: PPO

47

• Policy gradient algorithm
• Optimization objective

• Approximated objective



Backup: PPO

• Adaptive KL PPO:
• Solve the constrained optimization problem by adaptive KL penalty coefficient

48



Backup: PPO
• Clip PPO:
• Surrogate objective

• Approximate the KL constraint by clipping the advantage function

49



Backup: PPO

• Add entropy term to the objective to encourage exploration

50



Backup: Transfer Learning in RL

• Finetuning does not work
• Policies and value functions become overly specialized 
• Optimal policies trained in fully observed MDPs are deterministic

• Wil not explore in the new MDP
• Low-entropy policies adapt very slowly to new settings 

51



Backup: Object searching in the dark
• Active exploration

• Turing on or off the light will sharply change the visual fields (observations)
• Explore the space

• Never seen before
• The model uncertainty is high
• More likely locations inferred from prior knowledge (high correlation between pillow and bed)

• Model building
• Embed the first-person visual observations into a low dimensional latent state space z

• Preserve the visual similarity for retrieving the image of target object
• Key challenge: Build the MDP graph in the latent space Z

• Preserve the transitions: 𝑠, 𝑎 → 𝑠′
• Preserve the spatial relationships of the objects (The cup is on the table)

• Searching with the flashlight results in a limited visual field which makes the inference of object spatial
relationship harder

52



Variable Friction Pushing Task: Trajectory Distribution
• Does the behavior difference between policies learned with or without energy 

rewards reflect the agent’s knowledge of friction coefficient? 

53

The fraction of trajectory length spent on the 
low friction band 



Variable Friction Pushing Task

54

No energy: prefer the shortest path With energy: prefer the low friction path



Variable Mass Pushing Task

55

No energy: choose either box With energy: always choose lighter box


