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What is a good representation for planning?

• An asymmetric distance function reflecting the state transitions
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Irreversible transitions



forward window

𝑪 = 𝟐

Asymmetric contrastive learning
• Applying contrastive learning to the Markov chain of world dynamics
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Asymmetric contrastive learning
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C-step geometric abstraction
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Reference state conditioned distance measure
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Subgoal discovery

• Define subgoals as the states that reduce pairwise reaching
probability, as perceived from the agent’s current state. 

• Identified using DBSCAN on the latent point density estimated 
according to 𝑑; 𝑢, 𝑣 . 
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point density in the latent spaceprobability density in the original state space
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Experiments
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refence state 1

refence state 1 refence state 2

refence state 2

Subgoals identified as gray states



The effect of step size C
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C=1 C=16 C=64

The rooms and doorways are separated further apart in the representation space as C goes up.



Summary
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paper

• Contrastive learning with two separate encoders gives
rise of an asymmetric similarity function that encodes
state reaching probability.

• Contrastive learning embeds a geometric abstraction of 
the original Markov transition graph.

• These two geometric properties together enable us to
find perspective-conditioned subgoals easily.


