
Finding Structure in Deep Reinforcement Learning

Meng Song
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92037

mes050@eng.ucsd.edu

Abstract

The goal of this survey is to provide a comprehensive overview of discovering
hierarchical and progressive structures in the context of modern reinforcement
learning. Recent approaches and progress are reviewed and framed around two
topics: hierarchical reinforcement learning (HRL) frameworks and the representa-
tion and discovery of subgoals. We explore extensively on relevant inspiring ideas,
their developments and connections to other important problems in RL, and more
broadly general AI.

1 Introduction

One of the hallmarks of human intelligence is the ability to compose basic components in novel
ways. This capability reflects the structured nature of the world or at least how knowledge organizes
our understanding of the world [1]. Our mental representation expresses scenes in objects and their
interactions, objects in parts and attributes [2]. Our language is formed by constructing words into
sentences, sentences into paragraphs [3]. We solve complex tasks by composing learned skills or
familiar behavioral procedures in hierarchy with details of low-level control abstracted away [4]. For
example, we achieve the task of attending this morning’s computer vision class by bicycling to the
campus, walking to the classroom, and listening to the lecture. All these forms of composition are
driven by our cognitive mechanism and cultivate the emergence of abstract representations such as
concepts, events, and intentions [5]. The limitless ways of creative combination of these building
blocks is crucial to generalize our knowledge and thoughts to accommodate new situations [6, 7]. Yet
a large gap still remains between human and artificial intelligence in terms of generalizable learning,
in particular, for sequential decision-making problems. To cope with this challenge, it is natural to
ask what is the right way to explicitly model the compositional hierarchy of goal-oriented behavior
for generalization. Similar to a typical deep neural network [8, 9, 10, 11, 9, 12, 13] which enables
distributed representations [14] by a hierarchical abstraction procedure and obtains generalization
power from exponential combination of learned elements, the behavioral hierarchy is also studied
and leveraged in reinforcement learning from a computational perspective.

Reinforcement learning [15] considers the problems where agents learn goal-directed behavior by
trial and error in the environment. Being catalyzed by deep neural networks, modern RL methods
have made significant progress, enabling agents to accomplish complex tasks such as simulated
locomotion for navigation [16], robotic manipulation [17], Atari games [18], and Go [19]. However,
current RL agents still suffer from considerable difficulties when facing:

1. Sample efficiency: Existing RL methods require huge amounts of interactions with envi-
ronment, which are substantially more than a human would need. For example, despite
combining all technical advances on DQN [18], Rainbow [20] requires 8 million frames of
experience for training to achieve a human-level performance in most Atari games, which is
approximately 80 hours of game experiences. Even without having to solve vision, training
an agent to learn simple walking gait costs 15 to 20 CPU hours.

2. Sparse rewards: Because of the computational formulation, RL algorithms highly rely on
reward signals to learn desired behaviors. However, in many real-world scenarios, the agent
only experiences rewards occasionally or when the task is completed. And designing dense
rewards precisely reflecting the task is impractical. Thus, most of the agent’s exploration is
futile, and success is by chance.

3. Transferring experiences across tasks or environments: Agents trained by deep RL
methods are known to easily overfit to training environment. Slight change in dynamics or
reward function (e.g., changing the mass of pendulum from 1 kg to 2 kg in pendulum swing-
up task) can cause the learned policy fail to transfer and hard to adapt [21]. Leveraging
neural networks as function approximator exaggerates this situation, resulting in an agent
prone to be attracted by lazy local optima and weird environment regularities. This partly
explains why RL is the only area in machine learning where it’s socially acceptable to train
on the test set.

Exploiting hierarchical structures in the space of controls or polices has been of longstanding interest
in reinforcement learning. RL methods learning to behave on different levels of temporal abstractions
are known as hierarchical reinforcement learning (HRL) [22]. In two-layer HRL architecture, high
level controller learns to select not only one-step actions, but also low level policies performing in the
action space, which are referred as options, skills, macro-actions, or sub-policies. To illustrate the
benefits of behavioral hierarchy, we start by analyzing how HRL helps alleviating the aforementioned
problems in RL:

1. Structured exploration: HRL enables the agent to explore with sub-policies rather than
myopic primitive actions, making longer exploration possible in scaled-up state space. This
capability of reaching non-local environment configurations is critical for building the
world model, thus helps improving sample efficiency. Chaining learned skills [23] also
quickly focuses exploration and modeling on paths near subgoals, therefore increases agent’s
chances of being rewarded and discovering critical transitions.

2. Transferable behavior modules: Unlike directly transferring complex skills, sub-policies
learned in HRL can be efficiently transferred to a related task, considering that they have
already been constrained in small regions of state space.

Besides proposing promising solutions to these fundamental issues in RL, HRL also facilitates
long-term planning and reasoning [24], and successfully solves a lot of complex tasks otherwise
unapproachable by single flat policy. Typically, evaluations are performed on continuous control
tasks requiring an agent to achieve goals by navigation, which involves locomotion skills and basic
object interactions, e.g. Ant Maze, Ant Push, and Swimmer Navigation.

For concreteness, Options framework [22] presents a formal definition of HRL by incorporating it
into MDP formalism where the high-level controller can directly operate over sub-policies without
concern for the details of their execution. However, this general formulation does not enforce any
fixed form to the separation of low-level policies, and providing strategies to automatically induce
semantically distinct sub-polices is challenging. For this reason, constructive efforts have been made
in the field to discover sub-polices [25, 26, 27]. In most cases, the resulting sub-policies either entail
simple sequential action patterns or lack any intentions behind. In other words, the agent decomposes
its behavior in strict accordance with policy structure, in which procedure the structure of state space
is out of awareness.

In contrast to leaving decomposition motivation and mechanism unclear, Feudal framework explicitly
defines how high-level controller modulates low-level policies, i.e., high level controller (manager)
generates subgoals, and worker executes policies to achieve them. The central concept subgoal
corresponds to a group of states which acts as waypoints to guide the agent towards completing the
overall goal. Subgoal bridges the manager and worker and naturally gives rise to intrinsic rewards.
By centering around subgoals, the focus of structure discovery is switched from temporal abstraction
to state space abstraction, which from cognitive science perspective, corresponds to a transition from
dividing concrete behaviors to extracting abstract intentions. The design of Feudal framework aligns
well to the observation that when humans are facing a complex task that requires long-term planning
or deliberation, they usually set up subgoals within their knowledge space, and solve the whole task
by divide and conquer. In this sense, subgoals can be viewed as scaffolding for building the optimal
behaviors.

2

Although subgoals help decompose a hard task into manageable sub-tasks, subgoal representation
and discovery are still fundamental and unresolved problems. By learning an embedding of the
state space as subgoal representations, a large number of methods has made progress on a range of
tasks, especially in continuous control domain. Most of them can be grouped according to whether a
subgoal is mapped to a set of target states or some specific features of the state space. Since the agent
is optimizing its policy during the learning process, self-discovered subgoals should progressively
increase the learning difficulty to match the agent’s capability and expand the knowledge boundary
efficiently. This motivates us to inspect the problem of subgoal discovery in the context of curriculum
learning. The discussion will proceed from the agent’s exploration in goal space to its active
modification of environments.

Generally, in this survey we study how AI’s capability for behavior generalization and self-motivated
learning are improved by biasing reinforcement learning methods towards hierarchical and devel-
opmental structures. And how this problem is strongly connected to a wide range of key topics in
reinforcement learning and general AI. The works cited in this survey are by no means an exhaustive
list of efforts on answering these fundamental questions throughout the history, but aim to provide a
representative cross-section of the breadth of inspiring insights and seminal ideas scattered.

The rest of this survey is structured as follows. We set out by a brief overview of reinforcement
learning framework and techniques in Section 2. Then we come to focus on a general HRL design,
i.e. the Options framework in Section 3. Section 4 is devoted to the definition and discussions around
the central concept subgoal and its associated hierarchical architecture, i.e. the Fedual framework.
Section 5 extends the idea of subgoal by establishing and developing its relationships to curriculum
learning. Finally, we conclude the survey with suggestions on future directions in section 6.

2 Background: reinforcement learning

2.1 Problem setting

Reinforcement learning is a framework where an agent learns to perform decision making or control
by interacting with the environment and getting feedback over periods of time [15]. At each discrete
time step t, the agent receives an observation ot of the state of environment st, and accordingly
selects an action at to take. After the agent acts on at, it will receive a reward signal rt+1 at the next
time step and affect the environment’s transition to the next state st+1 (Fig. 1).

Figure 1: The agent–environment interaction in a Markov decision process

A state s contains the complete information about how the environment works, whereas an observation
o could be a partial description of s which is constrained by agent’s perception.

In the literature, people often use s in place of o, however it is not technically rigorous since
the agent does not have access to the real state of the world in most of the cases. This review
will respect the notations in the cited works, and expect the readers to infer the precise meaning
of the notation from the context.

In aforementioned interaction loop, the environment can be specified by a tuple (S,A, P,R, ρ0, γ),
with S the state space, A the action space, ρ0 the initial state distribution, and γ ∈ [0, 1] a discount
factor. R : S ×A× S → R is a task-specific reward function with rt = R(st, at, st+1). P defines
the environment dynamics which can be written as a transition probability distribution P (st+1|ht, at)
in the stochastic case. P and R together specify the environment’s behavior, thus constitute a model
of the environment.

3

Generally, the environment state st+1 depends on history ht = (s0, · · · , st). However, almost all
systems RL is dealing with can be simplified to having transitions satisfying the Markov property.
Specifically, P = P (st+1|st, at), i.e. current state is sufficient statistics of the future. An environment
in this setting is called Markov Decision Processes (MDPs) [28].

On the other hand, the agent’s behavior is formally specified by its policy π, which is a mapping from
states st to actions at. A stochastic policy is usually denoted by a probability distribution π(at|st).
To measure the agent’s policy, we define a return as the discounted sum of rewards over a n step
trajectory (or called episode or rollout) τ :

R(τ) =

n−1∑
t=0

γtrt (1)

where τ = (s0, a0, s1, a1, · · · , sn−1) is generated by sampling actions according to a particular
policy. The discount factor γ determines how immediate rewards are favored relative to long term
rewards.

The probability of trajectory τ is:

P (τ |π) = ρ0(s0)

n−1∏
t=0

P (st+1|st, at)π(at|st) (2)

In MDP framework, the agent’s goal is to find an optimal policy π∗ which maximizes the expected
cumulative reward in the long run. This can be defined formally by maximizing expected return J(π)
of policy π, where J(π) integrates over all possible future trajectories τ produced by π:

π∗ = arg max
π

J(π) (3)

J(π) =

∫
τ

P (τ |π)R(τ) = E
τ∼π

[R(τ)] (4)

Although for the most part, the MDP framework is flexible and general enough to characterize the
problem of learning goal-directed behavior from interactions, reinforcement learning can be taken
beyond MDPs [15].

2.2 Value functions

Value functions are central concepts to reinforcement learning problems. The recursive relationships
derived from value functions lead to important properties in estimating optimal policies, which are
known as Bellman equations.

By definition, there are two types of value functions which estimate how good a state, or state-
action pair is under a given policy in terms of future rewards. To see this clearly, one can draw
correspondences to the value of vertices and edges in the graph representation of MDPs.

2.2.1 Value function

The value function of state s under policy π describes how much future rewards the agent can expect
to receive when it starts from state s and acts according to policy π. This is formally defined as:

V π(s) = E
τ∼π

[R(τ)|s0 = s] (5)

where state s0 indicates the starting point of trajectory τ .

Bellman equation for V π(s) is:

V π(s) = E
a∼π,s′∼P

[r(s, a) + γV π(s′)] (6)

where s′ ∼ P is shorthand for s′ ∼ P (·|s, a), meaning that the next state s′ is sampled from
environment transition distribution P . Notation a ∼ π indicates that action a is sampled from policy
π(·|s′).

4

The optimal value function gives the expected return if the agent starts from state s and acts according
to the optimal policy π∗, which amounts to the maximum value for state s achievable by any policy:

V ∗(s) = max
π

V π(s) (7)

Bellman equation for V ∗(s) is:

V ∗(s) = max
a

E
s′∼P

[r(s, a) + γV ∗(s′)] (8)

When the environment model is known, equation (8) can be used as the update rule to calculate the
optimal value for all states in standard value iteration algorithm.

2.2.2 Action value function

The action value function of state action pair (s, a) under policy π gives the expected return when
an agent starts from state s, taking action a, which may not come from the policy, and then acts
according to policy π. It could be written as:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] (9)

Bellman equation for Qπ(s, a) is:

Qπ(s, a) = E
s′∼P

[
r(s, a) + γ E

a′∼π
[Qπ(s′, a′)]

]
(10)

where action a′ is taken from state s′.

Estimating value functions based on (6) or (10) is a major building block of policy iteration algorithm.
This algorithm alternates between policy evaluation and greedy policy improvement, and is guaranteed
to converge to the optimal policy. In most of the cases, both of these two steps rely on value functions
heavily. Policy gradient algorithms in modern RL share a similar structure.

The optimal action value function gives the expected return if the agent starts from state s, takes
action a, and then always follows the optimal policy π∗:

Q∗(s, a) = max
π

Qπ(s, a) (11)

Bellman equation for Q∗(s, a) is:

Q∗(s, a) = E
s′∼P

[r(s, a) + γmax
a′

Q∗(s′, a′)] (12)

Equation (12) gives rise to another form of the value iteration algorithm.

If Q∗(s, a) is given at state s, we can directly get the optimal action a∗ by:

a∗(s) = arg max
a

Q∗(s, a) (13)

Furthermore, if Q∗(s, a) is available for all s ∈ S, we have the optimal policy π∗.

2.2.3 Connections between V and Q

From the definitions, we can directly derive the key connections between the value function V and
the action value function Q:

V π(s) = E
a∼π

[Qπ(s, a)] (14)

V ∗(s) = max
a

Q∗(s, a) (15)

Qπ(s, a) = r(s, a) + γ E
s′∼P

[V π(s′)] (16)

Q∗(s, a) = r(s, a) + γ E
s′∼P

[V ∗(s′)] (17)

5

2.2.4 Advantage function

In RL algorithms, we often care more about the action’s relative advantage than its absolute value, or
more precisely, how much better is the specific action a than randomly selecting an action according
to π. This is expressed by:

Aπ(s, a) = Qπ(s, a)− V π(s) (18)

2.3 RL algorithms

Modern RL algorithms have been extended to solve increasingly complex tasks in a variety of
domains, such as game playing, locomotion, and manipulation, in large part because of using
expressive neural networks as function approximators. In this section, we will briefly introduce
several popular model-free deep RL algorithms to equip the readers with basic knowledge necessary
to understand later discussions.

2.3.1 Policy gradient algorithms

Model-free RL algorithms branch into two families, policy gradient and value-based algorithms,
based on whether the policy is directly optimized or induced from value functions.

The central idea of policy gradient algorithms [29] is straightly optimizing the policy by gradient
ascent to encourage the actions leading to high return. The policy gradient is calculated by forming
an estimator of the gradient of expected return from sample trajectories. We will first derive the
vanilla policy gradient algorithm, then extend it to more general cases.

2.3.1.1 Vanilla policy gradient algorithm
We consider a stochastic policy πθ parameterized by θ. The objective function (4) is thus written as:

J(πθ) =

∫
τ

P (τ |πθ)R(τ) = E
τ∼πθ

[R(τ)] (19)

To optimize πθ along its gradient, we can update θ by:

θk+1 = θk + α∇θJ(πθ)|θk (20)

The policy gradient∇θJ(πθ) can be analytically derived as:

∇θJ(πθ) = E
τ∼πθ

[n∑
t=0

∇θ log πθ(at|st)R(τ)
]

(21)

The outer expectation is further estimated by the sample mean of trajectories D = {τi}Ni=1 collected
under policy πθ:

∇θJ(πθ) =
1

N

N∑
i=1

n∑
t=0

∇θ log πθ(at|st)R(τi) (22)

2.3.1.2 Actor-critic architecture
The problem of vanilla policy gradient in (22) is that the future reward R(τi) is estimated from a
single trajectory while omitting other possible futures. It is unbiased but with high variance. To
remedy this, we replace R(τ) in expression (2.3.1.1) with Φt, and have the general form policy
gradient:

∇θJ(πθ) = E
τ∼πθ

[n∑
t=0

∇θ log πθ(at|st)Φt
]

(23)

Now ∇θJ(πθ) can be interpreted as the maximum likelihood of the policy weighted by Φt. Φt can
take different forms, such as

∑n−1
t′=t R(st′ , at′ , st′+1)− b (b is an arbitrary baseline of the cumulative

reward), Qπθ (st, at), and Aπθ (st, at). Among them, Aπθ (st, at) yields the lowest variance [30]. It
can be approximated involving only V function:

Aπθ (st, at) ≈ r(st, at) + γV πθφ (s′t)− V
πθ
φ (st) (24)

The actor-critic architecture builds on the standard policy gradient algorithm by adding a critic to
approximate value function V or Q. The algorithm first samples {(s, a, s′, r)} under current policy,

6

then the critic updates the value function, finally the actor updates the policy along the gradient
direction suggested by the value function according to (23). In deep RL, the value function and policy
are parameterized by separate neural networks. A3C [31] executes multiple parallel actors trained on
their own instances of the environment, thus accelerates and stabilizes training a lot.

2.3.2 Value-based algorithms

In value-based reinforcement learning methods, the optimal action is directly selected based on the
value function approximator, instead of having an explicit policy function.

2.3.2.1 DQN
Deep Q-network (DQN) [18] was one of the first breakthroughs in applying RL methods to learn suc-
cessful policies end-to-end from high-dimensional sensory inputs approaching real-world complexity.
DQN was shown to be able to master a diverse range of Atari games to superhuman level.

One core design of DQN is the usage of neural networks in classic Q-learning. Motivated by (13),
Q-learning learns the optimal Q function and selects the action yielding highest value evaluation as
its best policy. Based on Bellman equation (12), the recursive structure is exploited as loss function:

L(φ,D) = E
(s,a,r,s′)∼D

[(
Qφ(s, a)−

(
r(s, a) + γmax

a′
Qφ(s′, a′)

))2]
(25)

which measures how closely Qφ(s, a) satisfies the Bellman equation.

Qφ(s, a)−
(
r(s, a)+γmaxa′ Qφ(s′, a′)

)
is the temporal difference (TD) error, where y , r(s, a)+

γmaxa′ Qφ(s′, a′) is the regression target. In TD learning, the target is set to be n step ahead existing
estimate rather than complete return at the end of the episode, thus is known as bootstrapping.

ApproximatingQφ(s, a) using large non-linear function estimator such as a neural network will cause
the learning diverge or oscillate catastrophically. To address this problem, two key techniques were
introduced which have since been successfully adopted by many subsequent deep RL algorithms:

1. Replay buffer: In online Q learning, samples (s, a, r, s′) are consecutively generated from
behavior policy ρ’s exploration in the environment. However, optimization algorithms
usually assume that the samples are i.i.d. Moreover, learning on-policy should be avoided so
that the parameters are decoupled from the data they are trained on. To tackle these issues,
DQN stores all transitions (s, a, r, s′) encountered during training in the so-called replay
buffer (annotated as D in (25)), and samples random batch from it when performing updates.

2. Target network: The target in (25) is problematic as it depends on parameters φ we trained
on, thus varies a lot during training. In order to make the target more stable, a separate
network Qtarg is introduced to parameterize Q in the target, which is called target network.
Qtarg should change at a slower pace than the main network Qφ. Common practice is
either periodically copying the weights of Qφ to Qtarg or using a polyak averaging of Qφ’s
weights once Qφ is updated.

By putting them together, we can optimize main network Qφ according to:

φ← φ− α
∑

(s,a,r,s′)

(
Qφ(s, a)−

(
r(s, a) + γmax

a′
Qtarg(s

′, a′)
))
∇φQφ(s, a) (26)

2.3.3 DDPG

The requirement of computing the maximum over actions makes DQN only suited to solving RL
problems in discrete action space. By contrast, Deep Deterministic Policy Gradients (DDPG) [32] is
devised to learn in continuous action spaces.

DDPG adapts DQN by embedding Q(s, a) in an actor critic architecture as a critic. The actor is a
deterministic policy µθ(s) which produces the action maximizing Qφ(s, a). In other words, policy
network µθ acts as an approximate maximizer. Assuming that Q-function is differentiable with
respect to action, we can update µθ(s) by gradient ascent with respect to θ to solve:

max
θ

E
s∼D

[Qφ(s, µθ(s))] (27)

7

Specifically,

θ ← θ + β
∑
i

∇θµθ(si)∇aQφ(si, a) (28)

Optimization of Q(s, a) still follows (26). The only difference is that the optimal action in the target
is computed according to policy network µθ:

y = r(s, a) + γmax
a′

Qtarg(s
′, µθ(s

′)) (29)

3 Options framework

3.1 Definition

The most well-known formulation for HRL is probably the Options framework [22]. The central
concept options are proposed for generalization of primitive actions to include temporally extended
courses of action over a period of time. Formally, options are defined as (I, π, β) including a policy
π : S ×A→ [0, 1], a stochastic termination condition β : S+ → [0, 1], and an initiation set I ⊆ S.
An option could be activated at state s iff. s ∈ I . If an option is taken, the agent will act in the
environment according to π until β is met. Options in real life could be opening a door or having
a dinner which normally involves long sequence of primary actions described by joint torques and
muscle twitches.

By augmenting its action space with options, an agent can now choose to perform not only primary
actions, but also options based on current observation. This forms a policy over options, which can fit
to standard RL methods by simply treating options as actions.

In practice, options could either be provided in sketch [25] or learned from human demonstrations,
and are well suited to be deployed for solving complex tasks with innate hierarchies or subgoals.
Prominent examples could be found where AI is learning to play complex strategy games such as
Starcraft II [33] or Minecraft [34]. With mastered skills, large and complex state and action spaces
could be efficiently reduced, which enables quick strategic decision making in high-level controller.
When training to play against competitors, each sub-policy can have its own specific reward function
which helps flexible response.

3.2 Option discovery

Previous works have attempted to automatically discover meaningful options in a variety of ways and
have provided encouraging successes. However, most of the behavior primitives are induced by task
structures [26, 27]. Otherwise, the sub-policies tend to degrade to trivial solutions of either only one
option is learned to solve the whole task or option is changed at every time step.

This section will introduce several representative but very different heuristics to discover meaningful
behaviors, and discuss their advantages and applicable scenarios.

3.2.1 Emergence of options from behavior switching

One simple and direct way to temporally abstract a sequential decision making process is to view it as
multi-stage behavior switching problem. To develop this idea, STRategic Attentive Writer (STRAW)
[27] learns macro-actions by building implicit action plans and choosing to either update current plan
or commit to it. Being different from standard HRL setting, the low-level controller does not generate
sub-polices, i.e., it does not produce action from every observation, but instead plan a sequence of
actions from one informative observation. This lookahead allows the agent to allocate computation
only on key moments.

Let A be the number of possible actions and T the maximum time horizon of the plan. The dynamic
action plan at time step t can be represented by two matrices:

• Action-plan At ∈ RA×T describes the plan of future actions conceived at time t. The first
column of At corresponds to a probability distribution over actions that the agent will take
at time t.

8

• Commitment-plan ct ∈ R1×T is a row vector where the first element represents a Bernoulli
distribution of binary variable gt+1. If gt+1 = 1, the action-plan At+1 will be updated at
the next time step. Otherwise, the agent will commit to the current plan, i.e., At+1 = ρ(At),
where ρ reflects the advancement of time by shifting the matrix left for one column. A macro-
action is defined as a sequence of output actions {at1 , · · · , at2−1}, where gt1 = gt2 = 1
and gt′ = 0,∀t1 < t′ < t2.

The usage of this dynamic action-plan is established on the assumption that one observation contains
sufficient information to generate a sequence of actions. However, the complexity and length of
a macro-action could vary dramatically in reaction to the situation change. Therefore, the read
and update of action-plan should only focus on the part of the plan where current observation is
informative of desired actions. This attention mechanism is implemented by applying a grid ofK×A
of one-dimensional Gaussian filters to At over the temporal dimension. The grid position, stride and
standard deviation of Gaussian filters are parameterized by a vector ψAt , which can be regressed from
the feature representation zt of current observation xt:

ψAt = fψ (zt) (30)

Given zt, the network can also produce an action patch qt by comparing the observation and the old
plan. The update to the action-plan At is then created by scaling and shifting qt according to ψAt .

The commitment-plan ct is updated at the same time as At. Unlike the additive update to At, ct is
overwritten completely.

STRAW has been demonstrated to be able to learn meaningful action patterns and reactive strategies
in 2D maze, Atari games, and text. For instance, in 2D maze navigation, corners and areas close
to junctions are shown to correspond to locations where macro actions terminate and re-planning
happens. In game Frostbite, high-level actions such as jumping from floe to floe and picking fish are
learned. It is also observed that in game Amidar, when an enemy blocks the way, STRAW drastically
changes its plan and retreats to the left. Beyond learning in RL setting, STRAW can be viewed as a
general sequence prediction model to capture data with complex structure. For example, in character
prediction task, STRAW is capable of learning macro-actions corresponding to common n-grams.

Figure 2: Illustration of STRAW playing a 2D maze navigation game

3.2.2 Meta learning of hierarchical policies

MLSH [26] formulates the learning of a two-layer hierarchy of policies in meta learning setting,
where meaningful sub-policies are naturally discovered by training over a distribution of related
tasks. The model follows the Options framework and contains a set of sub-policies shared across
tasks, which are switched between by a task-specific master policy on top. The learning objective
hypothesizes that a good hierarchy should find a set of sub-polices that allow quick learning of master
policy when it is transferred to new tasks.

9

Note that in this survey, we make the distinction between the terms task and goal as: Tasks
may have different MDP dynamics, whereas goals can only differ in reward functions but not
environment transitions. For example, a maze task could change the maze’s configuration,
however, goals in a maze normally refer to different locations.

To achieve this objective, the underlying structure of the related tasks is exploited so that:

• The sub-policies represent shared sub-tasks. An optimal set of sub-polices discovered
should be both robust and diverse.

• The master policy captures how to compose sub-tasks and implements a task-specific
switch. That is, transferring this hierarchical agent to a new task can be done by solely
updating the master policy on how to schedule the sub-policies.

Formally, MLSH consists of a stochastic master policy parametered by θ, and K sub-policies
φ1, . . . , φK . the agent is trained on M tasks during its lifetime. For iteration of a specific task, the
agent starts with a random θ, then samples task M from a distribution PM over MDPs. Sub-policies
φ carried from previous iterations are optimized by interacting with the environment for T steps over
multiple episodes, and R is the total return. For each N time steps in an episode, the master policy
takes an action to activate a sub-policy by sampling an index k ∈ {1, 2, . . . ,K}. (Fig. 3)

The overall learning objective is defined as:

max
φ

EM∼PM ,t=0...T−1[R] (31)

To optimize (31), the learning algorithm iteratively alternates between two periods:

• Warm-up period: optimize θ.

• Joint update period: optimize θ and φ jointly.

The reason for setting up a warm-up period is that φ should only be updated when θ is near optimal.

Comparing with other HRL methods, the architecture of MLSH has several notable advantages:

• There are no gradients between the master and sub-policies. They communicate solely by
an one-hot sub-policy index. The simplification of communication can also be seen in the
design of Feudal framework [35].

• The lack of gradient communication also allows MLSH to be agnostic to learning methods.

• Both the master and sub-polices are allowed to observe the environment and receive rewards,
which makes learning easy.

Rich experiments have been conducted to show that diverse sub-policies can be automatically learned
through MLSH. For example, directional movement primitives such as move up, right, and down
have been discovered where an Ant is trained on a distribution of mazes. Another interesting scenario
is that an agent is rewarded to reach one of two randomly placed points. Each point has its own fixed
color and the agent does not know which one is the goal. After training, sub-policies of movements
towards each point are automatically learned to decompose and solve this problem.

Figure 3: Architecture of MLSH, where K = 3

10

3.2.3 Representation learning of options

A line of recent works [36, 37] has attempted to embed sub-policies as latent variables or add a latent
layer in between to facilitate high-level planning, efficient modeling, and exploration.

As a specific example, SeCTAR [37] implements the options framework by a trajectory-level varia-
tional autoencoder (VAE) [38], which learns to generate and predict behaviors. In addition, a world
model operating on the trajectory level is induced from this VAE. An MPC controller planning on the
latent space of VAE takes the role of the master policy.

The core VAE is comprised of three components:

• An encoder qφ(z|τ), which embeds trajectory τ into a latent variable z.
• State decoder pθSD (τ |z), which can decode z directly into a trajectory.
• Policy decoder pθPD (a|s, z) representing a latent-conditioned policy, which can generate a

trajectory by acting in the environment sequentially.

where trajectory τ = [s0, s1, . . . , sT] is a sequence of states, which are taken from a short segment
of an episode.

The state decoder can be thought of as a model to predict the outcomes of the policy. This predictive
model is not built at the state-action transition level, which makes the model building substantially
easier.

On the other hand, to train the VAE, the policy decoder is encouraged to imitate the state decoder’s
behavior, generating a trajectory that matching trajectory predicted by the model.

The overall objective function maximizes the likelihood of trajectory p(τ) as well as the consistency
between the state decoder and policy decoder:

max log p(τ)
s.t. Eqφ [DKL (pθPD (τ |z)‖pθSD (τ |z))] = 0

(32)

The state decoder allows us to perform model-based planning using model predictive control (MPC).
The latent space is just the action space of MPC controller, where one can sample a random z and
simulate its trajectory by the state decoder. Trajectories for training are collected by an explorer
starting from the states visited by MPC controller and exploring diversely by maximum entropy.

We summarize the advantages of SeCTAR as following:

• A continuous latent space is learned for the trajectories rather than a discrete set of skills,
which makes SeCTAR applicable to continuous control tasks.
• SeCTAR enables model-based long-horizon planning.
• Leveraging the properties of Gaussian distribution in VAE, the latent space organized trajec-

tories functionally. One can interpolate the latent variables and visualize the corresponding
trajectories.

• Training a master policy is not needed.

4 Feudal framework and subgoals

4.1 Definition of feudal framework

Feudal framework [39] is a powerful and efficient HRL design where different levels of hierarchy
within an agent communicate via explicitly defined subgoals. At high level, a manager operates to
set abstract subgoals, whereas a worker is employed to achieve them at a level below. The manager
makes high-level reasoning at a lower temporal resolution than the worker behaves at. Two key
advantages arise in this subgoal-centric architecture:

• Decoupling: It decouples end-to-end learning across levels into two parts: goal setting and
goal achievement, which clearly separate the duties of manager and worker. The only shared
actionable information between manager and worker is a latent goal space.

11

• Flexibility: First, how to achieve subgoals is not specified by the manager. Second, the
worker can choose to interact with the environment or only receive intrinsic rewards elicited
from subgoals.

In Feudal framework, an agent’s behavior can be viewed as chaining a set of sub-trajectories directed
by intrinsically generated goals.

4.2 Definition of a general goal space

In the classic reinforcement learning paradigm, the agent’s goal is defined as maximizing task-
dependent cumulative rewards on a MDP. For example, in a 2D maze, an agent could be asked to
achieve a goal location in the upper-left corner guided by reward function r1, and a different goal
location in the right-bottom corner described by another reward function r2. Therefore, such goals
constitute a goal space G, where each goal g ∈ G corresponds to some extrinsic reward function
r(g). Based on G, the notion of value functions V (s) and Q(s, a) can be generalized to V (s, g) and
Q(s, a, g), and so can their optimal counterparts. For example, general value function V (s, g) now
caches a chunk of knowledge about the utility of any state s in achieving a given goal g [40]. Thus,
V (s, g) can be viewed as the knowledge representation of how to evaluate or control a specific aspect
of the environment. That is, the progress from subgoal s towards goal g.

Accordingly, the agent’s capability is expected to go beyond achieving a single overall goal. To
explore the whole goal space, now the agent is required to learn a goal conditioned policy π(a|s, g)
that can achieve multiple goals in the environment. This capability of mastering broadly applicable
and general-purpose skills is not only a pursuit of general AI, but also aligns with the practical
requirement for an agent to fulfill a wide range of user-specified goals at test time.

However, should the agent be rewarded only when it sets the goals as achieving external tasks?
Indeed, this strong association between goals and tasks excludes the rich supervision signals innate in
the environment dynamics itself, and poses the challenge of sparse extrinsic rewards to the agents. To
remedy this issue, the goal space G should be further generalized to incorporate the manipulation of
environment, i.e., G could be extended to the observation space. Concretely, consider the sensori-
motor stream X = (o1, a1, o2, a2, · · · , ot, at, · · ·) produced by the agent-environment interaction,
a more general objective for the agent is to learn to predict and control this stream [41], or the
future. For instance, in Ms. PacMan, an agent could learn to maximize the accumulated number of
pellets and minimize the number of ghosts it observes by actively approaching or avoiding them.
It is hypothesized that an agent capable of flexibly controlling its future is certainly competent for
maximizing extrinsic rewards induced by any task. This is because the future is a very rich space,
even to make a small change to a pixel may require the agent to master complex and immense
behaviors, and more importantly much deeper understanding of the environment dynamics. And the
behaviors learned from reaching one goal are likely to recur for many other goals, which suggests
that the vastness and richness of goal space would endow the agent with strong generalization ability.

4.3 Definition of subgoals

The notion subgoal introduced in Feudal framework has richer meanings and broader reach far
beyond serving a specific architecture of HRL. In essence, subgoals are waypoints to reach a general
goal defined above. With the help of subgoals, the agent does not need to perform global optimization
on the policies over the entire action-state space or all sampled trajectories. Subgoals could provide
directions or intermediate targets to guild the agent’s behavior. In the cases where a measure could be
defined in the goal space, an agent can even use subgoals to measure its progress to the ultimate goal.

In summary, by exploiting the structure of task space, an agent can employ subgoals to decompose a
hard and complex task into a set of easy and simple subtasks, then solve them by divide and conquer.
This could be done by a single agent with hierarchical controller, a single agent with flat policy but
regularized by subgoals, or even multi-agents acting in the same environment.

4.4 Subgoal representation

Depending on the scope of goal space, subgoals are endowed with different interpretations, thus their
representations fall into two categories:

12

In the first case, subgoals are defined in terms of states, e.g. the goal space G ⊆ S. Several useful
representations include:

• Subgoal is a target state sT ∈ S [42, 43, 16].

• Subgoal corresponds to a subset of states [44, 45].

• Subgoal is a direction vector in state space [35].

The closeness of state space and goal space allows one to exploit the common structure between
states and goals. For example, Universal Value Function Approximators (UVFA) [40] are designed
to learn a generalized value function for any state-goal pairs.

In the second case, subgoals are defined in terms of the observation space. That is, a subgoal
focuses on controlling some aspect of the future [46]. For example, in rich visual environments, an
agent’s subgoals could be to manipulate some factors of the visual content via its actions [41, 47].
From a HRL perspective, the meta controller tells the sub-controller which aspects of the input
observation it should control, and the sub-controller receives intrinsic rewards for successfully
changing the content and as well as the extrinsic rewards from the environment for learning fine-
grained behaviors. Based on the abstraction level, subgoal representations in this case can be broken
into two categories:

• Pixel control: Subgoals are represented in raw image space. The agent is trained to learn
a sub-policy to maximally changing the pixels in a given patch between two consecutive
frames.

rint(k) = η
‖hk � (st − st−1)‖2

‖st − st−1‖2
(33)

where hk selects the given (kth) patch and st denotes the pixels in frame t. The change in
values of pixels in a patch is measured relative to the entire screen.
Experimental results on Montezuma’s Revenge demonstrate that by controlling pixels around
rewarding objects, such as a key, the agent is driven to reach that target region.

• Feature control: Subgoals are represented in feature space. The agent aims to control
some desired features and ignore the others, which can be implemented by maximizing the
activation of specific feature map (a group of neurons) in the second convolutional layer of
CNN.

rint(k) = η
‖fk (st)− fk (st−1)‖∑
k′ ‖fk′ (st)− fk′ (st−1)‖

(34)

where fk(·) denotes the mean over activation values in the kth feature map. And the induced
intrinsic rewards are normalized.

In the following sections, we will review several prominent subgoal representations and their roles in
HRL.

4.4.1 Raw states as subgoals

In continuous control setting, the state space is usually low dimensional, fully observed, and close to
the right representation level supporting the underlying dynamics. Therefore, directly using states
as subgoals in their raw form becomes possible. This simple definition of subgoals significantly
simplifies the architecture design of Feudal framework and accelerates the training of sub-polices as
there is no need to learn goal representations.

HIRO [42] embodies this idea by a concise off-policy architecture, in which both manager and worker
are trained by DDPG-based algorithms. For each period of c time steps, the worker produces a goal
state qt , st + gt indicating the objective state to achieve in current period. And the worker would
try to perform a course of actions causing observation st+c closely matching qt. For example, in the
task of Ant Push, qt corresponds to the ant’s target pose.

Note that the manager’s action gt is directly defined as changes in the state. It is either picked
from the manager’s policy or a goal transition function h (st−1, gt−1, st) = qt−1 − st to keep the
absolution location of goal qt−1 proposed at the previous time step unchanged.

13

Similarly, the worker’s intrinsic reward is parameterized according to L2 distance between st+1 and
goal state qt, measuring current progress towards the goal.

r (st, gt, at, st+1) = −‖qt − st+1‖2 (35)

Although off-policy training improves sample efficiency, it poses a challenge that is unique to HRL.
Since the worker’s policy keeps changing under the manager’s command, the same action produced
by the manager in the past is highly probable to yield a different low-level behavior in the future.
Therefore, past experiences collected in the replay buffer are not valid to train the manager any more.
HIRO addresses this issue by re-labeling the action gt in past transition (st, gt,

∑
Rt:t+c−1, st+c)

to g̃t, where g̃t is a different goal action chosen to maximize the probability of the past lower-level
actions at:t+c−1 under the worker’s current policy. That is,

max
g̃t:t+c−1

µlo (at:t+c−1|st:t+c−1, g̃t:t+c−1) (36)

In other words, we would like to know which goals would allow this new controller to repeat its old
actions.

For comparison, HIRO is reported to outperform a FuN modification [35] on Ant Maze, Ant Fall,
and Ant Push.

4.4.2 Decision states as subgoals

Like STRAW [27], InfoBot [44] also explores the concept of decision states where obvious behavior
change is required. InfoBot defines the decision states in the scenario where the agent learns goal-
conditioned policies in multi-goal environments. In these states, the agent learns to deviate from its
habits, i.e. default policy, and make a right decision towards specific goal states. In other words, the
default policy is what the agent follows in the absence of any knowledge about the goal, such as
goal locations, directions, the relative distance to the goal. It can thus be formulated as the result of
marginallizing out goal g in multi-goal policies πθ(A|S, g) :

π0(A|S) =
∑
g

p(g)πθ(A|S, g) (37)

To recognize decision states, the agent is trained with an information regularizer:

I(A;G|S) = Eπθ [DKL [πθ(A|S,G)|π0(A|S)]] (38)

Minimizing this regularizer encourages the agent to rely on its goal-independent habits as much as
possible, and only deviates in decision states. Thus, this regularizer plays the role of information
bottleneck which limits the amount of goal information used by the agent’s policy during training.

In this respect, decision states are natural subgoals since they identify the boundaries between
achieving different goals. Actively seeking out these subgoals can benefit further exploration. Note
that decision states are similar in spirit to the notion of bottleneck states [48], which is defined as
the intersections of a variety of rewarding trajectories. However, partitioning the state space purely
using graph theory without considering the reward structure [49] will lead to a trivial explanation of
bottleneck states, e.g., in a setup of a T maze. In contrast, decision states are more parsimonious and
accurate.

The experiments have shown that training an agent with a goal bottleneck alone leads to more efficient
policy transfer than a vanilla goal-conditioned A2C agent. For example, in MultiRoom navigation
environments, the agent can discover a wall following strategy quickly when it is transferred to solve
a larger task.

4.4.3 Directional subgoals

14

FeUdal Networks (FuN) [35] embodies a two-level Feudal framework by end-to-end differentiable
neural networks, and generalizes the definition of subgoals from absolute locations to directions in
latent state space. Using directions to direct the worker’s policy other than locations provides the
following advantages:

• Directional subgoal makes a clear connection to the worker’s transitions, and constrains
them to follow a specific distribution around that direction, thus is much reliable to achieve
than reaching an arbitrary location.

• A directional subgoal assumes one degree of invariance, thus allows for structural general-
ization of corresponding sub-policies.

• The worker’s pursuit of subgoals leads to a semantically decomposed latent space, where
diverse directions are translated into meaningful behavioural primitives.

In order to allow better long-term credit assignment and tractable memorization, both manager and
worker are modeled as LSTMs, which keep compressing latent states into their memories. Then
given observation xt and external reward Rt received from the environment, the architecture of FuN
(Fig. 4) can be described from two views:

• Manager: At every c time steps, the manager outputs a unit vector gt as the goal. However,
treating gt as a latent variable and training it by gradients coming from the worker would
deprive gt from any semantic meaning. Instead, it is desired that gt is along advantageous
directions promising to maximize future rewards:

∇gt = AMt ∇θdcos (st+c − st, gt(θ)) (39)

where AMt is the manager’s advantage function defined as AMt = Rt − VMt (xt; θ). Cosine
similarity dcos(·) measures the discrepancy between current advancing direction and the
goal direction.

Once a goal gt is chosen, the worker’s behavior can be predicted by the manager according
to transition distribution πTPt , p(st+c|st, gt) if the worker indeed learned to follow the
goal. Furthermore, if πTPt follows von Mises-Fisher distribution, then it can be updated by:

∇θπTPt = E
[
(Rt − V (st))∇θ log πTPt (θ)

]
(40)

which is exactly equivalent to Eq. (39).

• Worker: The worker LSTM outputs an embedding vector for each possible action. Then
the action embedding matrix is mixed with a goal embedding pooling over goals of past c
time steps to produce a policy action. The worker is trained on a weighted sum of external
rewards and intrinsic rewards Rt + αRIt , where RIt is derived to encourage the worker to
align with the goal direction:

RIt = 1/c

c∑
i=1

dcos (st − st−i, gt−i) (41)

FuN is trained using A3C and only applicable to tasks defined on discrete action space. Experiments
are performed on Atari games such as sea quest and Montezuma’s revenge to validate that FuN is
capable of learning interpretable subgoals and sub-polices consistent with human experiences.

4.4.4 Actionable representation of subgoals

To find subgoals in state space, [43] proposes to distinguish two goal states functionally. That is, if
two states require different actions to reach, then they are different. To capture factors of variation
important for decision making from a state, (i.e. actionable representation), a distance metric is
defined as:

DAct (s1, s2) = Es [DKL (π (a|s, s1) ‖π (a|s, s2)) +DKL (π (a|s, s2) ‖π (a|s, s1))] (42)

Note that to make it hold for arbitrary initial state, the expectation is computed over all initial states s.
And we assume that a policy π has already been trained with maximum entropy.

15

Figure 4: Architecture of FuN

To learn this actionable representation φ(s), one could optimize:

min
φ

Es1,s2 [‖φ (s1)− φ (s2)‖2 −DAct (s1, s2)]
2 (43)

This actionable representation coarsely captures the dynamics of the environment, and also provides
a good metric in reachability which can be used as intrinsic rewards in Feudal HRL.

4.4.5 Subgoals as entities-relations

In the previous sections, we have discussed a variety of subgoal representations in continuous control
scenarios. However, all of them are studying state abstractions in a simplified, low-dimensional space,
whose complexity is far from what real world presents in terms of objects and their relations. This
gap prevents us from investigating the agent-world interaction in a right way. That is, a right state
representation should allow the agent to realize that state transitions of our physical world are a
result of changes happened on object states (observations). Therefore, it is reasonable to hypothesize
that an appropriate state abstraction should be structured or sufficiently compositional [50]. For
example, a state could be represented by a scene graph, and the state change could be computed by a
Graph Neural Network (GNN). Then the question is how can we learn such state abstractions that
support efficient decision making?

A recent work h-DQN [50] has taken first steps towards answering this question by defining subgoals
in the space of entities and relations. The architecture of h-DQN is a general framing of two-layer
Feudal framework (Fig. 5) which is composed of a meta-controller, a controller, and a critic. Both
of the meta-controller and controller are trained by DQN but on extrinsic rewards and intrinsic
rewards respectively. The Q functions for meta-controller and controller are denoted by Q∗2(s, g) and
Q∗1(s, a; g). The critic receives subgoal gt and gives intrinsic rewards rt(gt) to the controller based
on whether gt has been reached, where rt is predefined and task specific. Note that the probability ε
in ε-greedy also depends on current empirical success rate of reaching gt.

The h-DQN agent is evaluated on Montezuma’s Revenge where the subgoals are defined in space of
tuples < entity1, relation, entity2 >. The agent receives a reward when the tuple is evaluated as
true. In this case, the agent gets score when it reaches a target location, e.g, key or door.

5 Subgoals and curricula generation

Curriculum learning [51] is a learning strategy where tasks are presented in an order with increasing
difficulty for better generalization and faster learning. This progression of tasks can be described by
sub-goals as way stations to the overall goal. Making a connection between subgoal and curriculum
learning enables us to expand the scope of subgoal from space to time. Different from being in the
hierarchical control scenario, a set of subgoals here not only indicates a decomposition of the target

16

Figure 5: Architecture of h-DQN

task, but also presents a clear relation among its elements, i.e., the subgoals are arranged in an order
of increasing learning difficulty.

In this section, we will introduce several methods that can generate the curricula automatically by a
set of self imposed subgoals.

5.1 Emergence of curricula from self-play

Unlike previous Fedual hierarchical models, Self-Play model [52] pre-trains the low level controller,
i.e. the worker, by unsupervised asymmetric self-play before gets it directed by the manager via
subgoals. During self-play, the agent keeps inventing new tasks with increasing difficulty and
complexity for itself to solve via the goal embedding. The diversity of goals is ensured by an
adversarial reward structure.

Specifically, in self-play phase, consider Alice and Bob as two separate "minds" of the agent and they
takes turns in control. In each round of game, Alice first executes her policy in the environment for
TA time steps and ends up at state s∗. Then Bob takes actions for TB time steps, and succeeds if
at any time step he is close to s∗. Either Alice or Bob is rewarded 1 and the other 0. This reward
structure encourages Bob to master a task quickly and forces Alice to set new unexplored task to
challenge Bob. The run and chase game between Alice and Bob automatically generates a curriculum
of exploration. Imposing a similar time limit TA and TB ensures that the environment is always in the
right difficulty for Bob to improve. To strengthen the role of Bob as a learner and Alice as a explorer,
Bob is trained to imitate ground truth actions from Alice. And Alice is encouraged to devise diverse
tasks by maximum entropy.

A continuous low dimensional goal embedding gt is learned as part of Bob’s policy:

gt = E
(
s∗, sBt

)
(44)

where gt could be a relative measure φ (s∗)−φ
(
sBt
)

or an absolute representation of the target φ (s∗).
When the tasks involve manipulations of the environment, self-play learning distills the controllable
parts of the environment into the goal embedding, and ignores those the agent cannot change, for
instance the static background or random elements.

Next, in the hierarchical control phase, Alice quits and Charlie joins as a high level controller. Charlie
generates goal gt leveraging the learned goal embedding space to guide Bob to complete the target
task. After self-play, it is easier for Charlie to specify achievable subgoals that make up complex
tasks (Fig. 6).

The model has been evaluated on two tasks. In the control task, an Ant is required to gather randomly
placed objects. It is shown that Alice is able to propose diverse goal positions in all directions. The

17

hierarchical controller enables the agent to make long-distance exploration which is difficult for
an agent purely trained on flat atomic actions. The second game KeyDoor asks the agent to find a
random located treasure by first picking up a key and then opening the door. Alice is observed to
devise an increasingly complex curriculum throughout self-play. The initial tasks Alice proposed
are basic and just involve movement. Gradually, the agent learned to unlock the door and navigate
to another room. And finally the space of tasks afforded by the environment has been explored.
Moreover, the goal space is shown to reflect the controllable aspects of the environment.

Figure 6: Architecture of Self-Play model

5.2 Other curricula generation methods

Driven by the challenge posed in many robotic tasks that an agent is only given sparse or even binary
rewards, Hindsight Experience Replay (HER) [16] proposes to extract rewards from unsuccessful
experiences. An implicit curriculum is built by labeling previously reached states as goals other
than the one the agent was trying to achieve when replaying each episode. Those goals for replay
shift naturally from the ones easy to achieve even by a random policy to more difficult ones. Unlike
explicit curriculum, HER does not require any control on the distribution of initial environment states.
The simplest strategy to sample goals for replay is to use the final state achieved in each episode.

Similar to HER, method [45] also considers the problem of goal generation. However, instead of
sampling goals along past trajectories, this approach tries to gradually generate goals matching the
agent’s current capability.

Let each goal g ∈ G correspond to a set of states Sg. The agent is rewarded according to function
rg if it is in any state s ∈ Sg. A curriculum can be reliably built only when the goals it is made of
can be consistently reached by some policy. The overall objective of an agent is to find a policy to
achieve a high reward for a set of goals sampled from pg:

π∗ (at|st, g) = arg max
π

Eg∼pg(·)R
g(π) (45)

To optimize the coverage of goals, the agent is advised to always learn from a set of goals with
suitable difficulty. That is, the goals are reachable for the agent and also provide enough improvement
space:

GOIDi := {g : Rmin ≤ Rg (πi) ≤ Rmax} ⊆ G (46)

where Rmax is an upper bound of the performance above which the agent prefer to concentrate on
new goals. And Rmin requires the agent to receive enough reward signal for learning. To satisfy this
restriction, the sampling might by performed repeatedly from a small set of already mastered goals.

To provide a continuous goal-space representation such that a goal-conditioned policy can efficiently
generalize over the goals nearby, a generative adversarial network (GAN) is trained to generate goals
satisfying GOIDi.

By combining goal relabeling technique from [16] and goal generation, paper [53] learns a latent
space of high dimensional observations by β-VAE, which enables the agent to imagine goals and
practice to achieve them.

18

POET [54] goes beyond curriculum learning by inventing its own diverse and expanding curricula not
in a strict sequence, but asynchronously and in parallel like a tree. This diverse multi-path discovery
progression is accomplished by pairing the environment generation and agent optimization in the
spirit of combinatorial multi-objective evolutionary algorithm (CMOEA) and a minimal criterion
coevolution (MCC). The discovery of stepping stones or subgoals is based on novelty search where
the individuals with behaviors most different from their ancestor are selected. These subgoals could
be transferred between environments to catalyze innovation. Each active environment is encoded as a
vector which could be modified to a new one by random mutation.

In the experiments, a bipedal walker equipped with a LIDAR is required to navigate through various
terrains with diverse obstacles. The environment is chosen to be a testbed is because it is easy to
modify and fast to simulate. Experimental results have shown that POET is able to find subgoals
leading to solutions to very challenging environments, which could neither be solved by direct
optimization nor building a single path curriculum.

6 Conclusions and future directions

In this survey, we study the problem of finding right structures in deep reinforcement learning. We
investigate hierarchical reinforcement learning techniques by looking into two frameworks, Options
framework and Feudal framework, which focus on abstractions of policy space and state space
respectively. Further, we study the concept of subgoal first in the context of HRL, then move on to
explore its connections to curriculum learning.

Although modern RL algorithms have extensively explored the problem of structure discovery for
temporal extended behaviors and goal space, the structure inside a state has neither received enough
attention nor been exploited sufficiently in solving problems with rich semantic information [55] or
requiring complex planning [56]. As an initial attempt, we would like to study this open direction in
simplified scenarios, such as block stacking [57] and Montezuma’s Revenge. And another interesting
and challenging problem we would like to delve into is how to automatically generate subgoals by
observing the consequences of environment manipulation.

Acknowledgments

The author would like to thank the research exam committee members, Professor Shachar Lovett,
Professor Taylor Berg-Kirkpatrick, and Professor Lawrence Saul. The author would also like to thank
Professor Hao Su for his insightful comments.

References

[1] Richard Swinburne. The Nature of Explanation, pages 23–51. 03 2004.

[2] Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Proceedings of the
National Academy of Sciences of the United States of America, 105:10687–92, 09 2008.

[3] Noam Chomsky. Three learnable models for the description of language. IRE Transactions on
Information Theory, 2:113–124, 12 1956.

[4] Matthew Botvinick. Hierarchical models of behavior and prefrontal function. Trends in cognitive
sciences, 12:201–8, 06 2008.

[5] Thomas L Griffiths, Nick Chater, Charles Kemp, Amy Perfors, and Joshua B Tenenbaum.
Probabilistic models of cognition: Exploring representations and inductive biases. Trends in
cognitive sciences, 14:357–64, 08 2010.

[6] Elizabeth S. Spelke, Karen Breinlinger, Janet Macomber, and Kristen Jacobson. Origins of
knowledge. Psychological review, 99:605–32, 11 1992.

[7] Elizabeth S. Spelke. Core knowledge. The American psychologist, 55:1233–43, 12 2000.

[8] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):436–
444, 2015.

19

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. 2012.

[10] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, and Tara Sainath. Deep
neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine,
29:82–97, November 2012.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference on Learning
Representations(ICLR), 2015.

[12] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object
detectors emerge in deep scene cnns. In International Conference on Learning Representations
(ICLR), 2015.

[13] Jeffrey L. Elman. Finding structure in time. COGNITIVE SCIENCE, 14(2):179–211, 1990.

[14] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Parallel distributed processing: Explo-
rations in the microstructure of cognition, vol. 1. chapter Distributed Representations, pages
77–109. MIT Press, Cambridge, MA, USA, 1986.

[15] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[16] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in Neural Information Processing Systems (NIPS), pages 5048–5058. 2017.

[17] Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through physical
understanding: Using novel objects as tools with visual foresight. arXiv:1904.05538, 2019.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[19] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, L Robert Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P.
Lillicrap, Fan Fong Celine Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of go without human knowledge. Nature, 550:354–359,
2017.

[20] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI, pages 3215–3222. AAAI Press, 2018.

[21] Xingchao Liu, Tongzhou Mu, and Hao Su. Transfer value or policy? a value-centric framework
towards transferrable continuous reinforcement learning. In Workshop on Deep RL at NIPS,
2018.

[22] Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

[23] Andrew G. Barto, George Konidaris, and Christopher Vigorito. Behavioral Hierarchy: Explo-
ration and Representation, pages 13–46. 09 2013.

[24] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to sym-
bols: Learning symbolic representations for abstract high-level planning. Journal of Artificial
Intelligence Research, 61, 01 2018.

20

[25] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In Proceedings of the 34th International Conference on Machine Learning
(ICML), volume 70, pages 166–175, 2017.

[26] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. META LEARNING
SHARED HIERARCHIES. In International Conference on Learning Representations (ICLR),
2018.

[27] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John
Agapiou, and koray kavukcuoglu. Strategic attentive writer for learning macro-actions. In
Advances in Neural Information Processing Systems (NIPS), pages 3486–3494, 2016.

[28] Richard Bellman. Dynamic programming. Princeton University, 1957.

[29] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Proceedings of the 12th
International Conference on Neural Information Processing Systems (NIPS), pages 1057–1063,
1999.

[30] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

[31] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Tim-
othy P. Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on International
Conference on Machine Learning (ICML), pages 1928–1937, 2016.

[32] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In International Conference on Learning Representations (ICLR), 2016.

[33] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wo-
jciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo
Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin
Dalibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor
Cai, David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen,
Yuhuai Wu, Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaS-
tar: Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[34] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor. A deep
hierarchical approach to lifelong learning in minecraft. In AAAI, 2016.

[35] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,
David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pages
3540–3549, 2017.

[36] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In International Conference on Machine Learning
(ICML), 2018.

[37] John D. Co-Reyes, Yuxuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and
Sergey Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement learning
with trajectory embeddings. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), 2018.

[38] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations (ICLR), 12 2014.

[39] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in Neural
Information Processing Systems (NIPS), pages 271–278. 1993.

21

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

[40] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxi-
mators. In Proceedings of the 32nd International Conference on Machine Learning (ICML),
volume 37, pages 1312–1320, 2015.

[41] Max Jaderberg, Volodymyr Mnih, Wojciech Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks.
International Conference on Learning Representations (ICLR), 2017.

[42] Ofir Nachum, Shixiang (Shane) Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in Neural Information Processing Systems (NIPS), pages
3303–3313. 2018.

[43] Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with
goal-conditioned policies. NeurIPS Deep RL Workshop 2018, 2018.

[44] Anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew
Botvinick, Sergey Levine, and Yoshua Bengio. Transfer and exploration via the informa-
tion bottleneck. In International Conference on Learning Representations (ICLR), 2019.

[45] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In Proceedings of the 35th International Conference on Machine
Learning (ICML), pages 1515–1528, 2018.

[46] David Silver. Deep reinforcement learning with subgoals. Hierarchical Reinforcement Learning
Workshop at NIPS, 2017.

[47] N. Dilokthanakul, C. Kaplanis, N. Pawlowski, and M. Shanahan. Feature control as intrinsic
motivation for hierarchical reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, 2019.

[48] Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement
learning using diverse density. In Proceedings of the Eighteenth International Conference on
Machine Learning, ICML ’01, pages 361–368. Morgan Kaufmann Publishers Inc., 2001.

[49] Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut - dynamic discovery of sub-goals in
reinforcement learning. In Proceedings of the 13th European Conference on Machine Learning,
ECML ’02, pages 295–306. Springer-Verlag, 2002.

[50] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In
Advances in Neural Information Processing Systems (NIPS), pages 3675–3683. 2016.

[51] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning (ICML),
pages 41–48, 2009.

[52] Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. Learning goal embeddings
via self-play for hierarchical reinforcement learning. arXiv:1811.09083, 2018.

[53] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems (NIPS), pages 9209–9220, 2018.

[54] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired open-ended trailblazer
(POET): endlessly generating increasingly complex and diverse learning environments and their
solutions. arXiv:1901.01753, 2019.

[55] Yi Wu, Yuxin Wu, Aviv Tamar, Stuart J. Russell, Georgia Gkioxari, and Yuandong Tian.
Learning and planning with a semantic model. aXiv:1809.10842, 2018.

[56] Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn, and
Jiajun Wu. Reasoning about physical interactions with object-centric models. In International
Conference on Learning Representations (ICLR), 2019.

[57] Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly L. Stachenfeld, Pushmeet
Kohli, Peter W. Battaglia, and Jessica B. Hamrick. Structured agents for physical construction.
International Conference on Machine Learning (ICML), 2019.

22

	Introduction
	Background: reinforcement learning
	Problem setting
	Value functions
	Value function
	Action value function
	Connections between V and Q
	Advantage function

	RL algorithms
	Policy gradient algorithms
	Vanilla policy gradient algorithm
	Actor-critic architecture

	Value-based algorithms
	DQN

	DDPG

	Options framework
	Definition
	Option discovery
	Emergence of options from behavior switching
	Meta learning of hierarchical policies
	Representation learning of options

	Feudal framework and subgoals
	Definition of feudal framework
	Definition of a general goal space
	Definition of subgoals
	Subgoal representation
	Raw states as subgoals
	Decision states as subgoals
	Directional subgoals
	Actionable representation of subgoals
	Subgoals as entities-relations

	Subgoals and curricula generation
	Emergence of curricula from self-play
	Other curricula generation methods

	Conclusions and future directions

