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Abstract

Driven by the success of deep neural network in machine
translation and high-level visual feature extraction, image
captioning has attracted significant attention in the recent
year. To address this challenging problem, the encoder-
decoder architecture is widely adopted, where RNNs are
used as language model to decode the visual content into a
sequence of words. These sequential neural models are con-
sidered to be able to implicitly learn the sentence structure.
However, we lose the interpretability of how the composi-
tional structure of a sentence is expanded along with the
generation of words. This paper aims to provide a hypothe-
sis of the underlying syntactic mechanism by constructing a
new tree-structured neural network, R-RNN. The model ex-
plicitly generates the grammar and shows how the grammar
and semantic units influence each other through its connec-
tions. We validate this hypothesis with comparable perfor-
mance of image captioning as the vanilla RNN model on MS
COCO dataset.

1. Introduction
In recent years, the emergence of the encoder-decoder

architecture has shown great success in machine translation
[1] and image caption generation ([17], [4], [5], [18]. In this
framework, the encoder network first transforms one repre-
sentation, such as an image, or a source sentence, to a fixed
length semantic vector, then the decoder network decodes
the vector into a caption or a target sentence. The specific
networks chosen as encoders and decoders highly rely on
the structure of the input and the output modality. Typi-
cally, on the vision part, the convolutional neural networks
are used to extract the semantic information by exploiting
the 2D spatial structure of an image, while on the language
part, the RNNs are employed to model the temporal struc-
ture of a sentence. However, this sequential structure re-
flects the characteristics of speech, not language. Directly
translating our thoughts or mental states into words from
left to right assumes that the content of a sentence is deter-
mined in a single direction. This flat model does not natu-

Figure 1. The hierarchy of sentence generation illustrated by a con-
stituency tree. The grammar (non-leaf) nodes are associated with
the relevant sentence fragments , and the leaf nodes indicate the
words.

rally align with the hierarchical structure of a sentence from
the point of view of linguistics. A key piece that bridges the
meaning in our minds and the words is missing. That is the
grammar structure.

According to Chomsky Hierarchy [2], the sentences are
generated subconsciously according to a set of formal gram-
mar rules, which is called generative grammar. Following
the rules, the mental representation, or the thought vector,
is structured to a sentence in a recursive way from rough
to fine. This means that on a constituency tree, the word
is determined by the sequence of top-down grammar units
governing it. Under this assumption, people embody their
thoughts by gradually replacing the initial abstract ideas by
segmental meanings and finally by specific words (Fig. 1).

Furthermore, we think that the words should also influ-
ence the grammar generation. We thus hypothesize that the
procedure of people expressing their thoughts by a concrete
sentence can be well described by the pre-order traversal of
a constituency tree. This order is consistent with the way
people say a sentence. As a result, every node on the tree,
whatever it is grammar tag or word, is determined by both
the grammar history along the path starting from the root
and the word history beginning with the leftmost leaf node.

To validate our hypothesized mechanism of sentence
generation, we proposed a novel neural network, called re-
cursive recurrent neural network (R-RNN). The core of the
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Figure 2. The architecture of R-RNN model.

R-RNN consists of two connected parts: a tree-structured
grammar model, and a sequential word model. Each top-
down path on the tree is modeled as a RNN with the gram-
mar history shared at each parent node, while another hor-
izontal RNN is built on the bottom to model the word se-
quence (Fig. 2). Then two groups of connections are added
to interweave the left-right and top-down information flows.
This architecture endows R-RNN with the capability of
jointly generating the grammar and the words. More impor-
tantly, unlike most approaches which model the correlations
of words as a single RNN, our model takes an inside look
of how the language works when conveying the meaning. It
explicitly points out the dependency of each grammar unit
and word by its structure.

2. Related Work
Image Captioning Recently the encoder-decoder archi-
tecture has accelerated the pace of the community in
exploring the topic of image captioning. Since [17] and [4]
first introduced this CNN-RNN framework to the caption
generation task, a lot of works have been done to improve
the networks. [5] proposed a bi-directional RNN to extract
the word representation in a wider context. [10] added
multi-layers of word embeddings to help the multimodal
embedding. In [3], a recurrent visual memory is proposed
to learn the long-term dependencies. [18] creatively uses
the attention mechanism to associate the image region to
the generated word, thus visualizes the sentence generation
process. However, almost all these works employ the
sequential RNN to model the sentence, and few works pay
attention to the inside of how the language works in the
process of caption generation.

Grammar in Caption Generation [7] inputs the part-
of-speech tags into the neural networks to provide extra
context information. [8] uses a grammar template to
composite captions for new images. However, none of
them generates the grammar automatically.

Tree-structured Neural Networks A variety of recursive
models [15], [14],[9] are proposed to learn compositional
meaning representation of the sentence by traversing a
dependency tree in a bottom-up order. Different from
these approaches, we model the grammar generation or the
decomposition of the sentence meaning in a top-down order.

Some efforts have been put on investigating the ability of
RNN to model the complex structures in data. In [6], RNNs
are used as character-level language models. [16], LSTMs
with an attention model have shown to achieve the new
state-of-the-art results in syntactic constituency parsing, but
require a lot more training data. [12] further indicates that
neural sequence models like RNNs have the capability of
implicitly capturing the recursive compositional structures
in the data. However, due to having the model structure
as prior knowledge, tree-structured models can achieve the
same performance more efficiently and with more trans-
parency into the model.

3. Network Architecture
In this section, we first recall the basic RNN model, then

we introduce our R-RNN model piece by piece in details.

3.1. Vanilla Recurrent Neural Network

The recurrent neural networks (RNNs) have long been
used as neural language models. The goal of a statistical
language model is to compute a probability distribution over
a given sentence S = {x1, ..., xn}. Based on the chain rule,
the distribution of a sequence of words can be factorized as

P (x1, ..., xn) =

N∏
t=1

P (xt|x1, ..., xt−1) (1)

RNN models the conditional probability P (xt|x1, ..., xt−1)
by summarizing the word history x1, ..., xt−1 into a fixed-
length hidden state ht−1. At each time step t, a new word
xt is added to update the history (Eq. 2). Then the whole
history is used to predict the probability of the next word
yt (Eq. 3). In this first order dynamical system, the hidden
state acts as a memory to keep track of the important aspects
of past sequence to help the prediction.

ht = σ(Whxxt +Whhht−1) (2)

yt = Φ(W yhht) (3)

Typically, word xt is represented as a one-hot vector which
is of the equal size as the vocabulary. After training, each
column of the mapping matrix Whx will correspond to the
embedding of one word in the vocabulary. When it comes
to the image captioning, the visual feature is added to Eq. 2
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as a context vector. Then we can think of the word embed-
dings and the visual feature as existing in the same semantic
space. They therefore pick the next word together.

Note that in this paper, for fair comparison, the logistic
sigmoid function σ(z) = 1/(1 + exp(−z)) is used as the
activation function σ(·) for all the models, the clipping is
introduced to avoid the gradient explosion. Φ(·) represents
the softmax function.

3.2. Our R-RNN Model

Different from RNN, our recursive recurrent neural net-
works (R-RNNs) model the joint distribution of the sen-
tence S and the grammar P (S,G), where grammar G is
represented as the constituency tree corresponding to S.

As illustrated in Fig. 2, nodes on the constituency tree
fall into two categories: non-leaf nodes and leaves. Each
non-leaf node is labeled by a non-terminal grammar tag,
and is broken down into its child nodes according to a gen-
erating rule, e.g. S → NP, V P . Each leaf is labeled with
a special ending grammar symbol EOP as well as a word.
Therefore, we model the generation of these two kinds of
nodes in R-RNN respectively.

3.2.1 The Grammar Generation

For the grammar node visited at time step t, a modified
RNN is introduced to model the generating rule xt →
{g1, ..., gm}t. Specifically, we want to achieve the branch-
ing by RNN’s sequential prediction. To do so, unlike the
classical RNN where the input symbol and output symbol
share the same dictionary, we build one left-hand dictionary
for inputs and one right-hand dictionary for outputs. The
word in the right-hand dictionary is not one single symbol
any more, but a sequence of symbols yt = {g1, ..., gm}t.
This sequence decides the child nodes of node t from left to
right, thus generates the structure of the tree. Fig 3 shows
our special RNN by an example. At node t, the model first
updates the grammar memory of its parent node ht−1 with
input grammar xt and produces new state ht (Eq. 4). Then
it uses ht to predict its child sequence by selecting the most
likely ŷt from the right-hand dictionary, and branches ac-
cording to either the predicted sequence or the groundtruth
sequence. Note that at training time, the true right-hand
sequence yt is fed into the model for guiding the expan-
sion, while at generating time, ŷt is provided as the next
input. The structure is thus decided by the predicted se-
quence ŷt. In our model, the hidden states of sibling nodes
are all derived from their parents hidden state. This memory
sharing is significantly different from modeling each root-
to-leaf path by an independent RNN in [11].

Next, we let the word history influence the grammar gen-
eration by introducing word history sk to Eq. 5. During the
pre-order traversal, sk is the word history up to the word

Figure 3. Model the generation of a grammar node without the
word history.

Figure 4. Model the generation of a grammar node with the word
history.

Figure 5. Model the generation of a word node.

right before node t (Fig. 4). The intuition is that the words
have been spoken usually imply the next grammar unit.

In summary, our grammar generation model assumes
that P (xt|G(xt), S(xt)), the probability of grammar unit
xt, is conditioning on G(xt) and S(xt), where G(xt) is the
sequence of grammar relations along the path starting from
root to the parent of xt , and S(xt) is the sequence of words
spoken up to now.

ht = σ(WLxt +WHht−1) (4)
yt = Φ(WRht +WV sk) (5)

3.2.2 The Sentence Generation

To generate a sentence, we model the leaves from left to
right as a basic RNN with incorporating additional gram-
mar history at each leaf. For leaf visited at time step t,
the ground truth word wt is given to update the word his-
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tory s (Eq. 6). Then both st and the grammar history of
next word hj are used to decide the next word (Eq. 7).
The modeled probability of word ut has the same form
P (ut|G(xt), S(xt)) as the grammar unit in the grammar
generation model.

st = σ(WWwt +WSst−1) (6)
ut = Φ(WMhj +WUst) (7)

4. R-RNN As Sentence Generator
In this section, we talk about training our model on the

image captioning task and generating captions for new im-
ages. Different from other approaches trained on image and
sentence pair, the training sample input into the R-RNN is a
triplet (S,G, I) where I is an image, S is one ground truth
caption of I , and G is the constituency tree of S.

4.1. Training

R-RNN is trained by using mini-batch stochastic gradi-
ent descent to maximize the posterior probability of the sen-
tence and its grammar given the image w.r.t. the parameters
θ for all training triplets (S,G, I).

θ∗ = arg max
θ

∑
(S,G,I)

logP (S,G|I; θ) +
1

2
β ‖θ‖22 (8)

Specifically, during the pre-order visit of the constituency
tree, the model trying to predict each grammar tag on the
tree and each word of the sentence, after it has seen the
image at each time step. According to R-RNN, we have

logP (S,G|I; θ) =
∑
x

logP
(
x|I,G(x), S(x); θ

)
+
∑
u

logP
(
u|I,G(u), S(u); θ

)
(9)

where x is any grammar tag on G, and u is the word.
By using grammar as additional signals, our model sepa-

rates the semantic modeling and the syntactic modeling (Eq.
9). Therefore comparing to the RNN, our model provides a
way to inspect the sentence generation process, and to tell
whether the error is a grammatical one or a semantic one.

We pre-train the CNN on ImageNet 1000-way classifi-
cation task, and fix the CNN part during the training of R-
RNN. For each image, its fc-7 feature is fed at each gram-
mar node and word node as extra input in Eq. 6 and Eq.
5. We use one sentence-tree-image triplet as a mini-batch
to update the weights in R-RNN. All the weights are ran-
domly initialized. In each iteration, two sentinel nodes are
set up in advance to trigger the unrolling process. One is the
root node which has the initial grammar memory h0 and a
special grammar starting symbol ROOT . The other one
is an additional leaf node with the initial word memory s0

and a special sentence starting symbol 〈s〉. We call this leaf
l0. The feedforward starts with the root node and follows
the pre-order. When the first leaf l1 is met, l0 and gram-
mar structure governing l1 are used to predict the first word.
Note that since the sentence structure is defined by the tree,
we do not need EOS (End of Sentence) to control the sen-
tence length as the typical RNN. The back-propagation is
performed in the opposite direction of pre-order traversal.

4.2. Inference

Given an image, the natural way to generate a sentence
from RNN is to greedily pick the most likely word at each
step and feed it into the model at the next step. However,
since during the inference we do not have the groundtruth
to steer the model towards the correct direction, the dis-
crepancy between the ground truth and the generated word
will lead to errors accumulating quickly. To solve this prob-
lem, we need to introduce some diversity at each step. The
most common way is to generate the sentence with beam
search, which keeps more than one sentences at each time
step as candidates to decide the next word. However, since
our model generates the grammar structures automatically,
different predictions of the right-hand sequences will corre-
spond to different expansions of the tree. It therefore hard
to compare the candidates using beam search. As an alter-
native solution, we simulate the beam search by randomly
sampling from the top five candidates.

5. Experiments
5.1. Dataset

We conduct the experiments on the largest and the most
cited dataset in image captioning, the MS COCO dataset. It
contains 82,783 images for training and 40,504 images for
validation, each with 5 groundtruth captions generated by
human. The average length of the captions is 10.5 words
per sentence. We train the RNN and R-RNN on the training
set, but do not evaluate the models on the test set using MS
COCO evaluation server. Instead, we follow the splits in [5]
to select two subsets of 5,000 images from the validation
set, and use one for validation, the other one for testing.

5.2. Implementation

We implement both of our R-RNN model and the vanilla
RNN model from the scratch in C++. We optimize the
computation using MKL BLAS and parallelize it using
OpenMP. The models are trained with 8-core CPU.

To use the text in the dataset, we first preprocess each
caption by trimming the unnecessary leading and tailing
characters. Then we lowercase all the words and tokenize
the sentences using Stanford CoreNLP Tool. To construct
the word dictionary, all words occur less than 5 times are re-
placed by a special symbol OOV (out-of-vocabulary). The
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size of word dictionary built on the COCO training set is
8,840.

Since our R-RNN model requires the grammar structure
as extra inputs, we use the Stanford parser to parse each
caption in the COCO dataset into a constituency tree. Note
that since the parser is built on a statistical model, it will
inevitably introduce mistakes into the constituency tree.

To construct the two grammar dictionaries, we extract
each parent-child pair as a generation rule from the con-
stituency trees of all the training captions, and remove the
ones appear less than 5 times. By counting the distinct left-
hand sides and right-hand sides of the rules, we obtain a
left-hand dictionary with 65 grammar tags, and a right-hand
dictionary including 1,744 grammar sequences.

During the training of R-RNN and RNN, we use early
stop to avoid overfitting. For each epoch, we test the model
on the validation set. If the current loss on validation set is
larger than 99.7% of the previous loss, the performance im-
provement is considered to be not significant enough. We
thus reduce the learning rate by half. The learning pro-
cess stops when the learning rate has already dropped for
4 times.

In this paper, we use VGG-NET [13] to extract the visual
features from the images due to its powerful generalization
ability.

5.3. Model Comparison Results

To demonstrate the effectiveness of R-RNN as a lan-
guage model and the necessity of some key designs in our
model , we use the perplexity (PPL) as a metric to evaluate
the variants of our model and the baseline model vanilla
RNN on the COCO dataset. Note that when testing the
models, instead of inputting words and tags, we feed the
groundtruth into the model at each time step to enable the
comparison.

On the sentence side, PPL is the probability of generat-
ing the testing sentence normalized by the number of words.
The lower value indicates a better model. We compare RNN
and our R-RNN to tell how much of the perplexity reduc-
tion comes from knowing the grammar information. For
RNN, we compute PPL per word according to its standard
definition, that is

PPL(S) =
( N∏
t=1

P (xt|x1, ..., xt−1)
)− 1

N

(10)

where P (xt|x1, ..., xt−1) is computed according to Eq. 3.
For R-RNN, we compute its PPL per word conditioned

on the grammar tags along the root-to-leaf path as

PPL(S|G) =
( N∏
t=1

P (xt|S(xt), G(xt))
)− 1

N

(11)

w/o visual feature w visual feature
LR 2.86 -

R-RNN-g 2.38 2.29
R-RNN 2.11 2.07

Table 1. Perplexity per grammar tag on COCO test set. The mem-
ory size of RNN is 100. The word memory size and the grammar
memory size of R-RNN are both set to 100.

where P (xt|S(xt), G(xt)) is computed according to Eq. 7.
On the grammar side, the uncertainty of modeling the

constituency tree of the testing sentence is measured on
each root-to-leaf path. PPL per grammar is defined as the
probability of generating the grammar tags on all of the
root-to-leaf paths of the constituency tree normalized by the
number of tags.

We first set up a baseline model (LR) which only uses
the current grammar tag to predict the next one on the root-
to-leaf path, and its PPL per grammar tag is computed as

P (ut|ut−1) = Φ(ut−1) (12)

PPL(G) =
( M∏
t=1

P (ut|ut−1)
)− 1

M

(13)

Then we provide a variant of R-RNN to the comparison (R-
RNN-g). We remove the word history WV sk from Eq. 5.
In this case, current grammar tag only relies on its ancestor
grammar tags. Then PPL per grammar tag is computed as
Eq. 14. Comparing LR and R-RNN-g tells us how much
does the grammar history help the model improve the pre-
diction accuracy.

PPL(G) =
( M∏
t=1

P (ut|u1, ..., ut−1)
)− 1

M

(14)

Next, we show Eq. 15 to compute PPL per grammar for
our R-RNN model, where P (ut|S(ut), G(ut)) is defined in
Eq. 5. By comparing R-RNN-g and R-RNN, we know how
much uncertainty on grammar structure can be reduced by
knowing the previous words in the sentence.

PPL(G|S) =
( M∏
t=1

P (ut|S(ut), G(ut))
)− 1

M

(15)

The comparison results are shown in Table 1 and 2 in two
settings, with or without feeding the visual feature of the
given image into the models. The difference of the same
model’s performances in two settings measures the infor-
mation gain from the visual content of the image.

5.4. Image Caption Generation Results

In this section, we evaluate our R-RNN model’s ability
to generate the description of a new image on the COCO
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Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGEL METEOR CIDEr
R-RNN 0.61 0.41 0.28 0.19 0.44 0.19 0.53

RNN 0.60 0.41 0.28 0.20 0.44 0.19 0.53

Table 3. Caption genration results on COCO test set. The memory size of RNN is 100. The word memory size and the grammar memory
size of R-RNN are both set to 100.

w/o visual feature w visual feature
RNN 25.11 15.34

R-RNN 11.80 6.87

Table 2. Perplexity per word on COCO test set. The memory size
of RNN is 100. The word memory size and the grammar memory
size of R-RNN are both set to 100.

dataset, and compare it with the vanilla RNN. The gen-
erated captions are evaluated by the standard metrics for
caption generation task, that is BLEU from 1-gram to 4-
gram, METEOR and CIDEr. For all of these three metrics,
higher values are better. To generate a sentence using R-
RNN, we randomly pick the grammar tag from the top 5
choices, and choose the best word according to our model
in a greedy way. This is because by randomly sampling the
grammar structure, the word candidates already have the di-
versity in the part of speech. Randomly choosing words in
a specific word class will only change the semantic mean-
ing of the word, which instead reduces the prediction ac-
curacy. For example, when the model predicts the word
as a noun, although the top choices, such as cat and dog,
are ranked closely, will significantly change the meaning of
the sentence. The results in Table 3 demonstrate that our
model learns to generate the grammar and the caption si-
multaneously with performance comparable to RNN. Note
that our model is slightly better than RNN in Bleu-1 while
RNN is better than our model in Blue-4. This is probably
because by explicitly generating the grammar, our model
provides more flexible structures when organizing the same
key words.

6. Conclusions
In conclusion, we propose a hypothesis that people con-

vey their thoughts by the hierarchy of grammar. In this pro-
cess, the word history and grammar history together impact
the word and grammar prediction in the order correspond-
ing to the pre-order traversal of the constituency tree. To
validate this hypothesis, we design a novel neural network
R-RNN that explicitly embeds the proposed dependencies
into its connections. The experimental results on the COCO
dataset show that our R-RNN model has the same ability
in caption generation as the vanilla RNN, while our model
can also jointly learn the grammar generation. Through its
architecture, our R-RNN model provides an possible expla-
nation of how human form a sentence, and we therefore can
take a look at the inside mechanism of how the RNN de-

codes the unified thought vectors, such as a visual feature
or the encoding vector of a given sentence.
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